Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Journal of Clinical Neurology ; : 101-114, 2023.
Article in English | WPRIM | ID: wpr-967115

ABSTRACT

The cellular homeostasis of proteins (proteostasis) and RNA metabolism (ribostasis) are essential for maintaining both the structure and function of the brain. However, aging, cellular stress conditions, and genetic contributions cause disturbances in proteostasis and ribostasis that lead to protein misfolding, insoluble aggregate deposition, and abnormal ribonucleoprotein granule dynamics. In addition to neurons being primarily postmitotic, nondividing cells, they are more susceptible to the persistent accumulation of abnormal aggregates. Indeed, defects associated with the failure to maintain proteostasis and ribostasis are common pathogenic components of age-related neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Furthermore, the neuronal deposition of misfolded and aggregated proteins can cause both increased toxicity and impaired physiological function, which lead to neuronal dysfunction and cell death. There is recent evidence that irreversible liquid–liquid phase separation (LLPS) is responsible for the pathogenic aggregate formation of disease-related proteins, including tau, α-synuclein, and RNA-binding proteins, including transactive response DNA-binding protein 43, fused in sarcoma, and heterogeneous nuclear ribonucleoprotein A1. Investigations of LLPS and its control therefore suggest that chaperone/disaggregase, which reverse protein aggregation, are valuable therapeutic targets for effective treatments for neurological diseases. Here we review and discuss recent studies to highlight the importance of understanding the common cell death mechanisms of proteostasis and ribostasis in neurodegenerative diseases.

2.
Experimental Neurobiology ; : 550-563, 2018.
Article in English | WPRIM | ID: wpr-719049

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that is frequently linked to microtubule abnormalities and mitochondrial trafficking defects. Whole exome sequencing (WES) of patient-parent trios has proven to be an efficient strategy for identifying rare de novo genetic variants responsible for sporadic ALS (sALS). Using a trio-WES approach, we identified a de novo RAPGEF2 variant (c.4069G>A, p.E1357K) in a patient with early-onset sALS. To assess the pathogenic effects of this variant, we have used patient-derived skin fibroblasts and motor neuron-specific overexpression of the RAPGEF2-E1357K mutant protein in Drosophila. Patient fibroblasts display reduced microtubule stability and defective microtubule network morphology. The intracellular distribution, ultrastructure, and function of mitochondria are also impaired in patient cells. Overexpression of the RAPGEF2 mutant in Drosophila motor neurons reduces the stability of axonal microtubules and disrupts the distribution of mitochondria to distal axons and neuromuscular junction (NMJ) synapses. We also show that the recruitment of the pro-apoptotic protein BCL2-associated X (BAX) to mitochondria is significantly increased in patient fibroblasts compared with control cells. Finally, increasing microtubule stability through pharmacological inhibition of histone deacetylase 6 (HDAC6) rescues defects in the intracellular distribution of mitochondria and BAX. Overall, our data suggest that the RAPGEF2 variant identified in this study can drive ALS-related pathogenic effects through microtubule dysregulation.


Subject(s)
Humans , Amyotrophic Lateral Sclerosis , Axons , Drosophila , Exome , Fibroblasts , Histone Deacetylases , Microtubules , Mitochondria , Motor Neurons , Mutant Proteins , Mutation, Missense , Neurodegenerative Diseases , Neuromuscular Junction , Skin , Synapses
3.
Nutrition Research and Practice ; : 275-282, 2018.
Article in English | WPRIM | ID: wpr-716444

ABSTRACT

BACKGROUND/OBJECTIVE: There is intense interest in soy isoflavone as a hormone replacement therapy for the prevention of postmenopausal osteoporosis. A new kind of isoflavone-enriched whole soy milk powder (I-WSM) containing more isoflavones than conventional whole soy milk powder was recently developed. The aim of this study was to investigate the effects of I-WSM on bone metabolism in ovariectomized mice. MATERIALS/METHODS: Sixty female ICR mice individually underwent ovariectomy (OVX) or a sham operation, and were randomized into six groups of 10 animals each as follows: Sham, OVX, OVX with 2% I-WSM diet, OVX with 10% I-WSM diet, OVX with 20% I-WSM diet, and OVX with 20% WSM diet. After an 8-week treatment period, bone mineral density (BMD), calcium, alkaline phosphatase (ALP), tartrate-resistant acid phosphatase (TRAP) 5b, osteocalcin (OC), procollagen 1 N-terminal propeptide (P1NP), and osteoprotegenin (OPG) were analyzed. RESULTS: BMD was significantly lower in the OVX group compared to the Sham group but was significantly higher in OVX + 10% I-WSM and OVX + 20% I-WSM groups compared to the OVX group (P < 0.05). Serum calcium concentration significantly increased in the OVX + 10% and 20% I-WSM groups. Serum ALP levels were significantly lower in the OVX + 10% and 20% I-WSM groups compared to the other experimental groups (P < 0.05). OC was significantly reduced in the OVX group compared to the Sham group (P < 0.05), but a dose-dependent increase was observed in the OVX groups supplemented with I-WSM. P1NP and OPG levels were significantly reduced, while TRAP 5b level was significantly elevated in the OVX group compared with the Sham group, which was not affected by I-WSM (P < 0.05). CONCLUSIONS: This study suggests that I-WSM supplementation in OVX mice has the effect of preventing BMD reduction and promoting bone formation. Therefore, I-WSM can be used as an effective alternative to postmenopausal osteoporosis prevention.


Subject(s)
Animals , Female , Humans , Mice , Acid Phosphatase , Alkaline Phosphatase , Bone Density , Bone Remodeling , Calcium , Diet , Functional Food , Hormone Replacement Therapy , Isoflavones , Metabolism , Mice, Inbred ICR , Osteocalcin , Osteogenesis , Osteoporosis, Postmenopausal , Ovariectomy , Procollagen , Soy Milk , Soybeans
4.
Clinical and Experimental Vaccine Research ; : 156-159, 2017.
Article in English | WPRIM | ID: wpr-184069

ABSTRACT

Vaccination is the most efficient method for infectious disease prevention. Parenteral injections such as intramuscular, intradermal, and subcutaneous injections have several advantages in vaccine delivery, but there are many drawbacks. Thus, the development of a new vaccine delivery system has long been required. Recently, microneedles have been attracting attention as new vaccination tools. Microneedle is a highly effective transdermal vaccine delivery method due to its mechanism of action, painlessness, and ease of use. Here, we summarized the characteristics of microneedles and the possibilities as a new vaccine delivery route.


Subject(s)
Communicable Diseases , Injections, Subcutaneous , Methods , Vaccination , Vaccines
5.
Biomolecules & Therapeutics ; : 638-649, 2016.
Article in English | WPRIM | ID: wpr-209968

ABSTRACT

In the previous study, the rhizome mixture of Anemarrhena asphodeloides and Coptis chinensis (DW2007), improved TNBS-, oxazolone-, or DSS-induced colitis in mice by regulating macrophage activation. Therefore, to understand the effect of DW2007 on the T cell differentiation involved in the adaptive immunity, we measured its effect on both Th17 and Treg cell differentiation in splenocytes, in the lamina propria of mice with DSS-induced colitis (DIC), and in the spleens of mice with collagen-induced arthritis (CIA). Results showed that DW2007 potently inhibited the differentiation of splenocytes into Th17 cells, but increased Treg cell differentiation in vitro. In the colon of wild type and TLR4−/− mice with DIC, DW2007 potently suppressed DSS-induced colon shortening and myeloperoxidase activity. DW2007 also suppressed collagen-induced paw thickening, clinical index, and myeloperoxidase activity in CIA mice. Overall, DW2007 potently suppressed Th17 cell differentiation in mice with CIA and DIC, but increased Treg cell differentiation. Moreover, DW2007 strongly inhibited the expression of TNF-α and IL-1β, as well as the activation of NF-κB. Based on these findings, DW2007 may ameliorate inflammatory diseases by regulating the innate immunity via the inhibition of macrophage activation and the adaptive immunity via the correction of disturbed Th17/Treg cells.


Subject(s)
Animals , Mice , Adaptive Immunity , Anemarrhena , Arthritis , Arthritis, Experimental , Arthritis, Rheumatoid , Cell Differentiation , Colitis , Colon , Coptis , Dacarbazine , Immunity, Innate , In Vitro Techniques , Macrophage Activation , Mucous Membrane , Peroxidase , Rhizome , Spleen , T-Lymphocytes, Regulatory , Th17 Cells
6.
The Korean Journal of Physiology and Pharmacology ; : 197-202, 2015.
Article in English | WPRIM | ID: wpr-728524

ABSTRACT

Sulfonylureas are widely used as an antidiabetic drug. In the present study, the effects of sulfonylurea administered supraspinally on immobilization stress-induced blood glucose level were studied in ICR mice. Mice were once enforced into immobilization stress for 30 min and returned to the cage. The blood glucose level was measured 30, 60, and 120 min after immobilization stress initiation. We found that intracerebroventricular (i.c.v.) injection with 30 microg of glyburide, glipizide, glimepiride or tolazamide attenuated the increased blood glucose level induced by immobilization stress. Immobilization stress causes an elevation of the blood corticosterone and insulin levels. Sulfonylureas pretreated i.c.v. caused a further elevation of the blood corticosterone level when mice were forced into the stress. In addition, sulfonylureas pretreated i.c.v. alone caused an elevation of the plasma insulin level. Furthermore, immobilization stress-induced insulin level was reduced by i.c.v. pretreated sulfonylureas. Our results suggest that lowering effect of sulfonylureas administered supraspinally against immobilization stress-induced increase of the blood glucose level appears to be primarily mediated via elevation of the plasma insulin level.


Subject(s)
Animals , Mice , Blood Glucose , Brain , Corticosterone , Glipizide , Glyburide , Immobilization , Insulin , Mice, Inbred ICR , Plasma , Tolazamide
7.
The Korean Journal of Physiology and Pharmacology ; : 41-46, 2014.
Article in English | WPRIM | ID: wpr-727597

ABSTRACT

The possible roles of spinal histamine receptors in the regulation of the blood glucose level were studied in ICR mice. Mice were intrathecally (i.t.) treated with histamine 1 (H1) receptor agonist (2-pyridylethylamine) or antagonist (cetirizine), histamine 2 (H2) receptor agonist (dimaprit) or antagonist (ranitidine), histamine 3 (H3) receptor agonist (alpha-methylhistamine) or antagonist (carcinine) and histamine 4 (H4) receptor agonist (VUF 8430) or antagonist (JNJ 7777120), and the blood glucose level was measured at 30, 60 and 120 min after i.t. administration. The i.t. injection with alpha-methylhistamine, but not carcinine slightly caused an elevation of the blood glucose level. In addition, histamine H1, H2, and H4 receptor agonists and antagonists did not affect the blood glucose level. In D-glucose-fed model, i.t. pretreatment with cetirizine enhanced the blood glucose level, whereas 2-pyridylethylamine did not affect. The i.t. pretreatment with dimaprit, but not ranitidine, enhanced the blood glucose level in D-glucose-fed model. In addition, alpha-methylhistamine, but not carcinine, slightly but significantly enhanced the blood glucose level D-glucose-fed model. Finally, i.t. pretreatment with JNJ 7777120, but not VUF 8430, slightly but significantly increased the blood glucose level. Although histamine receptors themselves located at the spinal cord do not exert any effect on the regulation of the blood glucose level, our results suggest that the activation of spinal histamine H2 receptors and the blockade of spinal histamine H1 or H3 receptors may play modulatory roles for up-regulation and down-regulation, respectively, of the blood glucose level in D-glucose fed model.


Subject(s)
Animals , Mice , Blood Glucose , Cetirizine , Dimaprit , Down-Regulation , Glucose , Histamine , Mice, Inbred ICR , Ranitidine , Receptors, Histamine H2 , Receptors, Histamine H3 , Receptors, Histamine , Spinal Cord , Up-Regulation
8.
The Korean Journal of Physiology and Pharmacology ; : 493-497, 2013.
Article in English | WPRIM | ID: wpr-727491

ABSTRACT

We have recently demonstrated that some anti-diabetic drugs such as biguanide and thizolidinediones administered centrally modulate the blood glucose level, suggesting that orally administered anti-diabetic drugs may modulate the blood glucose level by acting on central nervous system. The present study was designed to explore the possible action of another class of anti-diabetic drugs, glinidies, administered centrally on the blood glucose level in ICR mice. Mice were administered intracerebroventricularly (i.c.v.) or intrathecally (i.t.) with 5 to 30 microg of repaglinide or nateglinide in D-glucose-fed and streptozotocin (STZ)-treated models. We found that i.c.v. or i.t. injection with repaglinide dose-dependently attenuated the blood glucose level in D-glucose-fed model, whereas i.c.v. or i.t. injection with nateglinide showed no modulatory action on the blood glucose level in D-glucose-fed model. Furthermore, the effect of repaglinide administered i.c.v. or i.t. on the blood glucose level in STZ-treated model was studied. We found that repaglinide administered i.c.v. slightly enhanced the blood glucose level in STZ-treated model. On the other hand, i.t. injection with repaglinide attenuated the blood glucose level in STZ-treated model. The plasma insulin level was enhanced by repaglinide in D-glucose-fed model, but repaglinide did not affect the plasma insulin level in STZ-treated model. In addition, nateglinide did not alter the plasma insulin level in both D-glucose-fed and STZ-treated models. These results suggest that the anti-diabetic action of repaglinide appears to be, at least, mediated via the brain and the spinal cord as revealed in both D-glucose fed and STZ-treated models.


Subject(s)
Animals , Mice , Blood Glucose , Brain , Carbamates , Central Nervous System , Cyclohexanes , Glucose , Hand , Insulin , Mice, Inbred ICR , Phenylalanine , Piperidines , Plasma , Spinal Cord , Streptozocin
9.
The Korean Journal of Physiology and Pharmacology ; : 187-192, 2012.
Article in English | WPRIM | ID: wpr-728102

ABSTRACT

In the present study, the antinociceptive profiles of hop extract were characterized in ICR mice. Hop extract administered orally (from 25 to 100 mg/kg) showed an antinociceptive effect in a dose-dependent manner as measured in the acetic acid-induced writhing test. Antinociceptive action of hop extract was maintained at least for 60 min. Moreover, cumulative response time of nociceptive behaviors induced with intraplantar formalin injection was reduced by hop extract treatment during the 2nd phases. Furthermore, the cumulative nociceptive response time for intrathecal injection of substance P (0.7 microg) or glutamate (20 microg) was diminished by hop extract. Intraperitoneal pretreatment with naloxone (an opioid receptor antagonist) attenuated antinociceptive effect induced by hop extract in the writhing test. However, methysergide (a 5-HT serotonergic receptor antagonist) or yohimbine (an alpha2-adrenergic receptor antagonist) did not affect antinociception induced by hop extract in the writhing test. Our results suggest that hop extract shows an antinociceptive property in various pain models. Furthermore, the antinociceptive effect of hop extract may be mediated by opioidergic receptors, but not serotonergic and alpha2-adrenergic receptors.


Subject(s)
Animals , Mice , Formaldehyde , Glutamic Acid , Humulus , Injections, Spinal , Methysergide , Mice, Inbred ICR , Naloxone , Reaction Time , Receptors, Opioid , Serotonin , Substance P , Yohimbine
10.
Korean Journal of Family Medicine ; : 703-710, 2010.
Article in Korean | WPRIM | ID: wpr-12529

ABSTRACT

BACKGROUND: Overweight in Korean adolescents has continuously increased over the past few years and it is recognized as a public health problem. We investigated the relationship between socioeconomic status and overweight in Korean adolescents. METHODS: The data was obtained from the 2007 Korean Youth's Risk Behavior Web-based Study. We included adolescents aged 12 to 18 yearswho were > or = 5th percentile of the BMI cut-off point based on the Korean child growth curve. Logistic regression analysis was performed to examine the association between socioeconomic status and overweight. RESULTS: The adjusted odds ratios for overweight were 1.116 (95% confidence interval [CI],1.021 to 1.220), 1.390 (95% CI, 1.242 to 1.555) in girls having middle and low grade family affluence scale (FAS), respectively, compared in girls having high grade FAS (P < 0.05). However, in boys, there was no significant relationship between FAS and overweight. In both gender, perceived household economic status and parental education level were negatively related to overweight in adolescents (P < 0.05). CONCLUSION: Lower socioeconomic status increased the risk of overweight in Korean adolescents. Efforts to reduce socioeconomic disparities in adolescents should be initiated for overweight prevention.


Subject(s)
Adolescent , Aged , Child , Humans , Family Characteristics , Logistic Models , Odds Ratio , Overweight , Parents , Public Health , Risk-Taking , Social Class , Socioeconomic Factors
11.
Korean Journal of Family Medicine ; : 755-764, 2010.
Article in Korean | WPRIM | ID: wpr-63117

ABSTRACT

BACKGROUND: Low high density lipoprotein-cholesterol (HDL-C) is one of the major risk factors for coronary heart disease. Using data from the Korean National Health and Nutrition Examination Survey (KNHANES), we assessed trend of the prevalence of low HDL-C and the factors which are associated with low HDL-C in Korean men. METHODS: We analyzed three serial KNHANES data which were conducted in year 1998, 2001, and 2005. Among all survey participants, we included men aged 30-79 years with laboratory data. Low HDL-C was defined by serum HDL-C < 40 mg/dL. We used multiple logistic regression analysis to assess the association between low HDL-C and related factors. We investigated trend of the prevalence of low HDL-C and associated factors among Korean men. RESULTS: The prevalence of low HDL-C in Korean men was increasing from 26.3% (1998) to 38.8% (2001) and 45.9% (2005). Low HDL-C was associated with non-alcohol drinker, current smoking, sedentary physical activity, obesity and hypertriglyceridemia. The prevalence of current smoking decreased linearly. The prevalence of sedentary physical activity and hypertriglyceridemia increased from year 1998 to year 2001, but decreased from year 2001 to year 2005. However, the prevalence of non-alcohol drinker and obesity increased continuously. The patterns of the increasing prevalence of low HDL-C were compatible to the increasing prevalence of obesity according to age in Korean men. CONCLUSION: From year 1998 to year 2005, the prevalence of low HDL-C in Korean men has increased. Obesity and non-alcohol drinking might be contributing factors of increasing prevalence of low HDL-C in Korean men. Management of obesity is needed to prevent increasing the prevalence of low HDL-C among Korean men.


Subject(s)
Aged , Humans , Male , Coronary Disease , Drinking , Hypertriglyceridemia , Logistic Models , Motor Activity , Nutrition Surveys , Obesity , Prevalence , Risk Factors , Smoke , Smoking
SELECTION OF CITATIONS
SEARCH DETAIL